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The electron gas at metallic densities is studied by means of a quadratic boson Hamiltonian
which includes the direct and exchange processes among the electrons but neglects the scat-
tering of electron-hole pairs. This Hamiltonian is further separated into two independent
parts which describe the singlet-and triplet states of the electron-hole pairs. These parts
are diagonalized in an approximation in which the exchange interaction is treated on the aver-
age. A dielectric function for all momentum transfers is thereby obtained. The correlation
energy is the sum of the ground-state energies of the singlet and triplet Hamiltonians. Its
value, calculated for the metallic density range (»¢=1-6), is found to be about two-thirds of
that in the random-phase approximation. It is consequently numerically smaller than most
other estimates. The triplet contribution is very considerable, The triplet ground state is

predicted to be unstable for »¢>9. 4.

I. INTRODUCTION

The correlation energy of an electron gas was
defined by Wigner! to be the difference between
the true ground-state energy and that calculated
in the Hartree-Fock approximation, It is a func-
tion of the specific interparticle separation », the
Bohr radius g, being taken as unity. In the high-
density (r,<< 1) and low-density (7,> 1) limits, its
value has been calculated very accurately by Gell-
Mann and Brueckner? and Coldwell-Horsfall and
Maradudin,  respectively. If we regard the elec-
tron gas as’a model of real metals, we must con-
sider its behavior in the intermediate-density re-
gion 1<7,<6. A number of estimates of the cor-
relation energy at metallic densities have been
made by means of interpolation methods. Wigner
and Carr and Maradudin® have interpolated be-
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tween the high- and low—density limits. Another
method is to interpolate between the contributions
from processes of high- and low-momentum trans-
fers, as was done by Hubbard® and Noziéres and
Pines.” There is also a variational calculation by
Gaskell.® These investigations and many others
have indicated that the properties of an electron
gas even at metallic densities aré-very similar

to those at high density.

It has been shown by Sawada® that the high-den-
sity results of Gell-Mann and Brueckner can be
obtained from a Hamiltonian quadratic in quasiboson
operators. These operators describe the creation
and annihilation of electron-hole pairs and approxi-
mately obey Bose commutation rules at high den-
sity. The Sawada Hamiltonian takes into account
the direct interaction between electrons in the
singlet state, and is equivalent to the random-
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phase approximation of Bohm and Pines. As the
density is lowered to the metallic region other
processes become considerable, and corrections
to the Sawada Hamiltonian must be made. The
sources of these corrections are four: (i) the
exchange interaction, (ii) the contribution from
the triplet state, (iii) the deviation from Bose
behavior, and (iv) the interaction between electron-
hole pairs. These corrections can be systemati-
cally calculated by transcribing the electron-gas
Hamiltonian in terms of ideal boson operators.
This method is due to Usui, !° who applied it to
calculate the exchange corrections to the properties
of a spinless electron gas at high density.

In this work we present a calculation of the cor-
relation energy of the electron gas at metallic
densities in the approach of the Usui-transformed
boson Hamiltonian. In Sec. II the Usui transform-
ation is discussed at some length, leading in Sec.
III to a boson Hamiltonian which is a generaliza-
tion of the one derived by Usui to the case of
spin-3 electrons. In Sec. IV the Hamiltonian is
separated into a singlet and a triplet part and
diagonalized by a canonical transformation; the
resulting eigenvalue equations are solved approxi-
mately. In Sec. V further approximations are
made so that finally we obtain a dielectric function
similar inform to that inthe random-phase approx-
imation but modified by a pair of interpolation
functions. In Sec. VI the correlation energy is
calculated and compared with some previous re-
sults. In Sec. VII the stability of the paramagnetic
ground state of the electron gas is briefly dis-
cussed.

II. TRANSITION TO BOSON OPERATORS

We consider a gas of N electrons at zero tem-
perature in a volume §, interacting through the
Coulomb potential with one another and with a
uniform background of neutralizing positive charge
density. Its Hamiltonian is given as follows:

H.=T+V,
T =Z€Baivaﬂo ’

V= 29 Z: V(q)aﬁ+ﬁoa3' ao'a;a,,apa,

2.1)
53:172/27’” >
V(q)=4ré’/q*, q+0
=0, q=0.

The creation and annihilation operators satisfy the
Fermi commutation rules

h g
[aﬁo’ Ay g ]+ = aiif' 8ot »

[ages @ 0],=0. (2.2)
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We define the specific interparticle separation 7,
by the relation

Q/N=tn(ra)’, ap=(me?), (2.3)

In the absence of the interaction the ground state
is the paramagnetic Fermi sphere of radius pp
given by :

@n)*(N/Q)=§npy (2.4)

each momentum state inside'the sphere being oc-
cupied by two electrons of opposite spin. The ef-
fect of the interaction is to transport electrons
from the inside to the outside of the Fermi ‘sphere
with conservation of spin. This action can be
described by electron-hole-pair creation operators
of the form

afetsa s P>Dp, D<bp - @.5)

The usefulness of these operators in the study of
the electron gas at high density has been demon-
strated by Sawada. Thus any paramagnetic state
of the electron gas can be obtained by operating
on the Fermi sphere with a selected set of the
operators (2.5). It is therefore convenient to ex-
press the Hamiltonian (2.1) in terms of them.
However, these operators obey neither Fermi nor
Bose commutation rules, being approximately
Bose-like only in the limit of high density. This
difficulty can be overcome by a transformation of
Usui in which the Hamiltonian is rewritten in terms
of ideal boson operators.

We shall describe in some detail the Usui trans--
formation. Consider a set of boson operators .

C?o, P>pF7 p<pF (26)
satisfying the Bose commutation rules

[ng, Ca o ] O3 655" Oow >
c,,]=[c§;’(,, c?t,,]=o.

We can generate a boson-state space by applying
the boson creation operators to the boson vacuum
state 10). We then try to set up a one-to-one cor-

2.7
[cE,, ck.

.respondence between this boson-state space and

the paramagnetic-electron-state space generated
by the application of the pair creation operators
(2. 5) to the Fermi sphere |0). First we can
easily map the Fermi sphere into the boson vac-
uum and the one-pair states into the one-boson
states; that is,

lo)~10),
atiuaiulo> ”Ciu|0)

However, for states containing more than one

pair, ambiguities arise. For example, to the two-
pair state

afﬁoaica};" %' ¢ l0> ’

(2.8)

(2.9)
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there correspond two two-boson states

\i t
ci ck. o), ceE " o). (2.10)

Whereas the interchange of the pair of annihilation
operators in the fermion state (2. 9) produces only
a change of sign, the corresponding permutation
of the lower indices of the boson state produces a
different state which is orthogonal to the former.
Moreover, for p=p’, the fermion state vanishes
but the boson state does not. A similar situation
occurs for fermion states with more than two
pairs. What is needed to resolve these ambiguities
is a criterion for choosing one particular boson
state to correspond to the fermion state. We shall
therefore assume that the momentum vectors have
been assigned a certain order the nature of which
will be specified later. Now the pair creation
operators of an arbitrary fermion state can be
grouped into two independent classes according to

the two values of the spin index. We can treat
each class separately. Within each class we have
~a set of indices Pand a set of indices p. Consider
all the boson states that can be formed with the
same sets of indices. We call that boson state
physical if, when the uppér indices are permuted
into the prescribed order, the lower indices are
simultaneously arranged in conformity with that
order. The other states, together with those have-
ing two or more identical indices, are called un-
physical. And we map the fermion state into the
physical boson state. Thus we have established a
one-to-one correspondence between the fermion-
state space and a certain subspace of the boson-
state space.

The operator effecting this transformation has
been worked out by Usui. Consider the product
space of the fermion- and boson-state spaces.
Then the operator that transforms a fermion state

IT ab,as,]0)|0) (2.11)
into the corresponding physical boson state
L cZ'loy o) (2.12)
is given by
U=0Ty exp(PZ ct awag,)PB . (2.13)

Here Iz, I'z, and O are projection operators onto
10), 10), and the physical boson subspace, respec-
tively. In the above, whenever a product of fermion
operators occurs, it must be assumed that the
momenta are already ordered to remove an ambi-
guity in sign. The inverse transformation is given
by the Hermitian conjugate ut.

III. BOSON HAMILTONIAN

Using the transformation U we can translate the
dynamics of the electron gas into that of a system
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of interacting bosons. The fermion Hamiltonian
Hg of (2.1) is transformed into a boson Hamilton-
ian Hp:

Hy=UH, U", (3.1)

An easy method to calculate Hy is to expand it into
a power series of physically ordered normal prod-
ucts of C and C'. = The expansion coefficients can
be expressed as the vacuum expectation values of
certain multiple commutators involving Hy. These
can be calculated since they are equal to the ex-
pectation values of the corresponding commutators
of Hy in the Fermi sphere.

It can be shown that Hy can be decomposed as
follows:

Hp= Hy+ H,+Hy+ H,, 38.2)

where H, is a constant and H,, H,, and H, are
quadratic, cubic, and quartic in boson operators,
respectively. The linear term vanishes because
of translational invariance. There are no terms
beyond the quartic because of the restrictions on
the momentum indices in (2.6). We have

Hy= (0| Hy |0)=(0| B |0)
2 T g-n T VB-D).

»<pp % 0, 0' <pp

(3.3)

This is recognized as the Hartree-Fock approxi-
mation of the ground-state energy. Therefore the
ground-state expectation value of the remaining
terms in (3. 2) is by definition the correlation
energy. We represent Ha as follows:

B
H2= Z;q [Dilﬁglulc ~:qo

!aol
+-2—E$:ﬁlq (C '~o° +H'C' )] b (3.4)
where
ch ‘ot T (Ol[[cﬁu’HB ‘o’ ”0)

=¢o|Il c,as‘,,HF] a%'a'awllm
= (€ ~ )63+ 683+ 0o
+ QUV(P =) = b4 V(B ~)o35,5 0 57 »
EE%.,. = 0][cF., ., (¢, H511|0)
=(0|[a}. o a5 , [ahotse, Hell|0)
=QY V(P =D) =60 V(P =D )o5:> 3.5+ -
(3.5)

Here €; is the Hartree-Fock approximation of the
electron energy:

€5=€B-—— 2 v(p-%k). (3.8)

k <pp
Substituting (3. 5) into (3. 4) and making a change
of notation
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cgv"cic(a) ’ 3.7
where §=P - bis the momentum transfer, we ob-
tain

o

+ 35 2 (LY@ = 800 V3 = B)ICK(@)Cs0:(3)
a8’

oo’
+[V(Q) = b4g ¢ V(P +D’ +Q)]

X[CE(QCl 5000 (=) +H.C. ]} . (3.8)

The summation of a ranges over the whole mo-
mentum space. For each a the summations of '[3
and -p’ are restricted to those regions inside the
Fermi sphere such that p+q and —p’ - q lie out-
side the sphere. These are depicted as regions 1
and 1’, respectively, in Fig. 1 for the special
case g<pp. They are formed by the intersections
of the Fermi sphere and two other identical spheres
centered at +q. They overlap in region 2. For

q >pr region 2 becomes simply connected; and for
q >2py all three regions 1, 1’, and 2 coincide with
the Fermi sphere.

When p and -’ both lie in region 2, the summa-
tions must be further restricted so that no unphys-
ical ordering of the indices of operator products of
the form C'C' or CC should occur. The reason for
this restriction of ordering is that in region 2 an
electron can go out of the Fermi sphere by absorb-
ing either a momentum a or —4. It is convenient
to order the momentum vectors according to the
magnitude of their projections along ?1 Then in
the last term of (3. 8), when both p and =’ are in

region 2, we should retain only those terms for
 which peq>~p’+q. This means that whenever two
electrons in region 2 are to be excited simultaneous-
ly out of the Fermi sphere by the absorption of
momentum transfers q and ~ g, we shall adopt the
convention that the one whose momentum has a
greater projection along a acquires the momentum
transfer ?1 This restriction on the summation is
equivalent to the replacement

Clo(@C5000 (- 3)

~[1=865485(~ (5+D")  D]CEe(DCY300 (- D), (3.9)
and similarly for the Hermitian conjugate. Here
8, is zero outside region 2 and when its argument

is negative; otherwise its value is 1. Substituting
(3.9) into (3. 8), we finally obtain

Hy= g (€50~ €)Ch6(@)C3(a)
o

2 X RIV(G) = by V(B = 5)]CL(DCyrgr (D)
2Q gz

oo’

+[V(a)_boa'W(§+-5 ya)]
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% [Ch(DClprg (- D+ H.c. TF, (3.10)
where
W(p+D, Q)= V(p+D +q) +05(~ (P+D")* Q)
x[V(§) - V(B +D' +D1], (3.11)

which is even under inversion in momentum space.

The cubic and quartic parts of (3. 2) can be
calculated and treated in a similar manner. They
describe the scattering processes of the electron-
hole pairs. In this work, however, they will be
taken to be negligible and discarded. This is
equivalent to assuming that even at metallic den-
sities the fraction of electrons excited out of the
Fermi sphere is still small.

IV. DIAGONALIZATION

We introduce singlet and triplet operators A and
B, respectively, as follows:

Aa(a) =%\/—§ [Cf,f(a) + Cﬁa(a)] 3

B3(@)=3V2 [C5(Q) - C5.(Q)] .
By (2.7) these satisfy the Bose commutation rules

[45(Q), A} (a"]=[B5(Q), BY ()] = 653043 » (4.2)

all other commutators vanishing. In terms of A
and B, H, is separated into two independent parts:

Hy=H® 4 g® 4.3)

(4.1)

where
H = X g - AN @45(D)
e 2 12V - V(5 -5y (D

+[2v(Q) - w(p+P', DNAKDA () +H.c. T},
. (4.4)
H® = g (E5.0 - &)BL(Q)B;(Q)

1 . vt
- - - B .
56 a;?;; {2v(5 -8B (3)B; (@)

7

O

FIG. 1. Regions of summation in momentum space
lg<pp.
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+ Wp+p, Q[BYD)B (- +H.c. ]}, (4.5)

Both D and p’ are summed over region 1. The
singlet Hamiltonian HV is a generalization of the
Sawada Hamiltonian. The electron kinetic energy
is now replaced by the quasiparticle energy in the
Hartree-Fock approximation. The terms in V(Zi)
represent the direct interaction. Those in W con-
taining 6, represent the deviation of the electron-
hole pairs from true Bose behavior. They may be
regarded as a kinematical interaction whose origin
can be traced back to the Pauli exclusion principle.
The remaining terms can be identified with the
matrix elements for various exchange processes.
In the following calculations we need only consider
H™; the corresponding results for the triplet '
Hamlltoman H® can be obtained by setting the
direct interaction equal to zero.

The correlation energy of the electron gas is
now the sum of the ground-state energies of H
and H®, Both the ground-state energies and the
excitation spectra can be obtained by diagonalizing
the Hamiltonians by a canonical transformation.
Consider the transformation to a set of new boson
operators A:’

A@)= Z[ (DAHD +B5(DAL-D] . (4.6)
The .superscmpt 1 indicates the region of summa-
tion. @and Bare real, having the symmetry
properties

ag 5(-)=og(q),
Bi,3(-a) = B(Q) ,
and satisfying the identities

(4.7

[ag; @ 23(@) - Bz (@)Br3@)]= 03z
[23;@) 255 @) - Bz (@)Biz (@)1= 0350

(4. 8)
(o35 @) Bi3@) - 223@ B @] =

wies mM» wilMes e

[aisﬁ)ﬁi;' @ - o5 @Bg@)]=0

The superscr1pt d indicates that the set of indices
k summed over is dependent on §. Then H can
be brought into the diagonal form

HY =5 9; @AY Az @) + Eo (4.9)
Tk
such that Qz(q) is positive and
Q.x(- ) = %@ (4.10)

provided that @ and B satisfy the eigenvalue equa-
tions

[256@) - 3@ Jos@ - 220 35 e @]

ah’ (q

Y

‘L
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-5 D W6-5)- VG- +Dlos

1

VH-1") asy(ﬁﬂ% L WE+D, DB @)

(4. 11)
[2:@ + w3@) s @-2”’2[%@ B @)

_1_
Q

v;m— u:,

-t T VB-F)- V65D Bs@
Pop

1 14 N
) 2 V®-1") By @) - ) DWH+D, Q) @)
b4 ';l
where
w3(@) = €5q- €5 - (4.12)
The ground-state energy is given by
Eo== 2 %(@)85@) (4. 13)
qkp

Equations (4. 11) are a set of homogeneous linear
equations which cannot be solved exactly. In the
random-phase approximation the right-hand sides
are put equal to zero. In this work we adopt the
approximation in which @ and B on the right-hand
sides are replaced by their average values in re-
gion 1:

1
ag@) - o3(q) = (q) 5 & W@ ,
; (4. 14)
Biz(@) ~ B;@— Q?B;(ﬁ) ,
where .
u(q)=—1§21 : (4.15)

This amounts to treating the direct interaction ex-
actly and the exchange interaction more or less on
the average. Substituting (4. 14) into (4. 11), we
obtain the approximate eigenvalue equations

[2:@) - @3@)] 25@) = 21 (@)
F3@ @ - 6;@ @)
[2:@) + 0;@] Be@) = 21 (@) - (4.18)
X [G5@) 0@ - F3@ 8:@)]
where
F;@)=v@)+f:@ ,
G3@ =V (@) +&5@ »

(4.17)

and

> 1 > - -
(e —— [ D -
f3@) 200 <P'<p,F V(p-p’+q)

- 2 Vv@- p)+Z)V(p p))

<P
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(4.18)

1
g2;@)=- ? WE+p', g

Zu(q)ﬂ

Solving (4. 16) for @3;(q) and Bg;(@) and taking the
averages over region 1, we obtain a pair of homo-
geneous linear equations for a(q) and Bi(@). The
vanishing of the determinant yields the dispersion
relation for the eigenfrequencies 9;(q):

€@, 2(@)=0,

where

.e(a’w)=[1—

21
+ =2
23

(4.19)

[ ey

(4. 20)

This is a generalization of the Bohm- Pines disper-
sion relation, and reduces to it at low-momentum
transfer. For large g,

f'p'((i)y g;(&)" - %V(a) )

and we recover the well-known result that the ex-
change processes reduce the direct interaction by
one-half at high-momentum transfer. Our expres-
sions f3(@) and g3(Q) in (4. 18) provide us with a
means for interpolating between these two limits.

From (4.8), (4.13), and (4. 16) it can be shown
that

E‘):%Z‘&;{i) @) - Z;)[ws(ﬁh—% F;(ti)]} .

(4. 22)

(4. 21)

V. DIELECTRIC FUNCTION

€(q, w) defined in (4.20) can be regarded as a
dielectric function for the electron gas. Itis
doubtful whether the expression could be evaluated
exactly. Even if it were possible, such an exact
treatment is perhaps unnecessary in view of the
approximation we have made in Sec. IV. Itis
simpler, and probably no worse, to continue making
the averaging approximation. First we replace all
the summands in (4.18) by their averages over the
Fermi sphere, thereby obtaining

1 - -, -
w=-gupls, B vE-7+d

(1 _ @) \1L ,
(1 u(ZpF)>n ,,%F v(p- )], (5.1)
na M) -vig 1
&> =5 (o uee) @
x[E)’F V(p-p +aQ) - Zu(q) LAC U I
where

CORRELATION ENERGY OF ELECTRON GAS..

1915

L5 5.2)
“2a5 1 -
1 _"; _ Pz[ p% -p° In| 22+2 ]
9,«2» V(5 -p= 24 Mpe-p )

Equation (5.1) is still too complicated for the
evaluation of (4.20). Therefore we again replace
f and g by their averages over region 1:

i D-Aq)= Efa(q) )

u(q)ﬂ 5. 3)

g5(D~g(q)= Egs q .

u( QG

This time it would not be a good approximation to
average over the whole Fermi sphere. With these
simplifications the dielectric function becomes

ZF“‘)E 2“’":‘2(1) ~4[FHY) - 6]

% [é%) w - i,(ﬁ)][?li 7;\' w +¢:3(E)] , 6.9
where

F(Q=V(Q)+AQ) ,
G(Q=v(q) +g(q .

We therefore assimilate the effects of the exchange
interaction by a pair of effective direct potentials
AQ) and g(q).

The evaluation of £(q) and g(q) in (5. 3) is
straightforward but lengthy. We list the relevant
results in terms of a dimensionless variable x:

x= Q/PF ’

w(2p p) = 2m)2 4w pd
ulg) = u(2pp) plx) ,

wlx) =30 -

€(ay w)=1-

(5.5)

x), 0<x<2 (5.6)
=1, x>2
vig)= u(2pp)vix) ,
vix)=% %, O<x<1
=& (120 -x%-8), 1<x<2
=3, x>2,
Then
F(Q)= 4—"2‘5—1~‘() dre” (;15+f(x)>,
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_4né® _4ne¥( 1
6(D=2 609= 222 % 1 at0),

f)= = g ) ~[1 - ] ¥}, 7
£00) = = [(x) = ()] XCx) - 522
u3(x) 2 (x)x
where
-EQ yZ) V(p=-p' +qQ)=—p p p3(2p 5) X(x) ,
141 re
5 ? 2,5 V(p-p)= 2 K Y
X(x) =5 plx) =31 ~3x)In2+¢,(x) , 0<x<2
=3 +p,x) , x>2 (5.8)

Y(x)=3 p(x) + (1 +3x) In2 = ¢4 (~x) , 0<x <2

P1(0)= 1o J' " -0KQ)
1

x+1
Ga()= o I dt (t =) K(t) ;
-1

K@) =@ -1 @+t)?In|1+2] +@+8) 1 -1)?m[1-¢] .
(5.9)

The evaluation of the ¢’s is elementary and the re-
sults can be expressed in terms of the function

P&, =n* {2 —in(4+£)+(1+&)]n|n|
~[En-&nd+£)+31+8)]},  (5.10)
whereby

¢1(x)—16 [¥(x, 2) = P(x, 2+ %) = (= x,~2)] ,

$2(x) = mx [¥(x, x) +9(-x,2 = %) (5.11)

- l,b(x,2+x)- be(_x,_x)] .

In Fig. 2 we plot the interpolation functions f(x) and
g(x) and compare them with Hubbard’s interpolation
function z(x):

h(x) == [2(x%+1)]? (5.12)

If we set f(x)=g(x)=h(x) in (5.4), we would obtain
the dielectric function in the Hubbard approxima--
tion. We note that f(x) is positive for x< 1 and is

finite at x=0. For large x all three functions ap-

proach the form — $x2,

VI. CORRELATION ENERGY

The dielectric function (5. 4) has the product rep-
resentation

3
09
o5 £(x)
)
h{x)
-0.5 g(x)
.09 1 ) | ]
05 o, 15 2.0 25
FIG. 2. Interpdlation functions.
q 2 1
e@o)=Tl1w - o}@) /T - @] . 6.1
By a transformation of Wentzel'! it can be shown
that ,
1
[Z;an Z; (@ ]=-—f dune(q, u) .
P
; 6.2)
Replacing F3(q) in (4.22) by F(Q) and using the
identity
1 wz(q)
f m 1, 6.3)

we obtain
E,= —1— > © du
0 4T q S

X (lne @, iu) - 2F(q) Zg ugﬁgg()a)) (6.4)

This expression enables us to calculate the grbund-
state energy without an explicit expression for the

eigenfrequencies. We introduce a dimensionless
variable y:
y= u/EF y
Ep=p%/2m . ®.5)
In terms of x and y we have
14 1 mp .
1 = —£F T 6.6
a 4? @) = 8 [R(x,y)+il(x,y)] , (6.6)
where
2 2_ .4 22 .2
L Yirdxtex 2x+x°%)*+y
R(x’y)“1+ 8x° 1“(2x_ x2)2+y2
2 .2
_y (tan.1 LIAT S ZL’_‘._) ,
2x y y
2 2 4 2 2
Y +4xt - x a2x+x L 4 2%-% )
I(x,y)= 4x° (tan " tan 5
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SR K2 2P o (2 o e R
4x y* 2x ’
O<x<2

2 2 4 2 2% — x2
_Yi+4xc-x (t 12%+x tan-1 2X=% )
T 4yd Tyt y

232, .2
+lm(2x+x )2+ g _yz

4x " (2x-x2P+9%  x 6.7)

, X>2.

Then the correlation energy per electron arising
from the singlet Hamiltonian is given by

3 © © 2
—E,,-f dxf dy x°A(x,) ,
4m 0 0

Alx,y)=In[1+ 7y, (x,9) +72M,(x, 9)] = v, (x,9) ,

E(l) -

corr™

(6.8)

where
2/ 4 1/3
== (a) rs=~0.3327, ,

I, (x,y) = F(0R(x,y) , (6.9)
M (x,9) = $[F2(x) = G*(W][R*(x,9) + I (v, )] .
In units of rydbergs (= ¢?/2a,), Ep is given by

9m\3/® 1  3.683
(<= —~ 2 6.
Ep <4) r2 r2 (6.10)

The correlation energy per electron arising from
the triplet Hamiltonian is obtained from (6. 8) and
(6.9) with the replacements of F(x) and G(x) by
fx) and g(x).

The two-dimensional integral in (6. 8) is evaluated
numerically for »;=1-6. In Fig. 3 we display the
result of the y integration,

B(x)=x? j:dyA(x,y) (6.11)

for 7v;=4. B(x) measures the contribution to the
correlation energy from processes of various mo-
mentum transfers. For comparison we also plot’
the corresponding result in the random-phase ap-
proximation obtained by setting f(x)=g(x)=0. We
note that the triplet Hamiltonian gives substantial
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FIG. 3. Contributions to correlation energy from pro-
cesses of various momentum transfers for »g=4: (1)
singlet, (2) triplet, (3) singlet and triplet, (4) random-
phase approximation.

contributions for x> 0.5, whereas in the random-
phase approximation these are zero. The total
contribution from the singlet and triplet Hamilto-
nians is about two-thirds of that in the random-phase
approximation. The final results of the integration
are shown in Table I and compared with those ob-
tained in other works. Our results are in general
numerically smaller than those of other authors. -
The triplet contribution is practically constant.

VII. STABILITY OF PARAMAGNETIC GROUND STATE

The reality of the correlation energy indicates
that the paramagnetic ground state of the electron
gas is stable at metallic densities. The singlet
contribution is always real since the interaction
between electrons in the singlet state is repulsive.
The triplet contribution is real predominantly be-
cause f(x) is positive at small x. However, as 7,
is increased, the triplet contribution may become
complex, signifying an instability in the triplet
ground state. This occurs when the argument of the
logarithm in (6. 8) becomes negative. Putting
R(x,y) and I(x,y) equal to their optimum values at
y=0, we obtain an equation for the determination
of the critical value:

L+yR(x, 0) f(x) + $¥2R%(x, O) f2(x) - g%(x)]=0. (7.1)

TABLE I, Correlation energy per electron in Ry.

7 1 2 3 1 5 6
Singlet - 0.082 - 0.058 - 0,047 — 0,040 - 0,035 -0.031
Triplet - 0.020 —0.020 -0, 020 -0,021 —-0,021 -0,022
Total —0.102 -0,078 - 0,067 - 0.060 —0.056 -0.053
Random-phase

approximation -0.157 -0.123 —0,105 —0,093 —0.084 -0,078
Hubbard (Ref. 6) s —0.099 —0.086 —0.074 —0.067 e
Noziéres and

Pines (Ref, 7) s —0.094 -0.081 -0.072 - 0.065 (R
Singwi et al.

(Ref. 12) —-0.124 -0.092 -0.075 —0.064 - 0.056 —-0,050
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The solution is

y==2{R(x, 0)[ f¥)+g)]}" . (7.2)

The right-hand side has a positive minimum of 3.1
at x~1. 2, giving a critical value

7s~9.4 . (7.3)

At this point the electron gas presumably becomes
ferromagnetic. If we had used instead of f(x) and
g(x) the Hubbard interpolation function z(x) in (7. 1),
we would have obtained a critical value 7,~3. 0.

VIII. SUMMARY

The results obtained in this work are summarized
as follows.

(i) A dielectric function for all momentum trans-
fers is derived.

(ii) The separate contributions to the correlation
energy from the singlet and triplet states are cal-
culated.
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(iii) The stability of the paramagnetic ground
state is put in evidence.

(iv) The limit of stability is estimated.

Although our approximation procedures greatly
simplify the problem and lead to reasonable results,
their accuracy and range of validity arehardtoas-
sess. This lack of knowledge precludes us from
studying the effects of the cubic and quartic Ham-
iltonians. It is perhaps more appropriate to inves-
tigate at this stage the other properties of the elec-
tron gas in the present approximation.
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Nuclear-Magnetic-Resonance Study of the Hydrogen Nucleus in OH" in the
Potassium Chloride Lattice*
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Experimental data are presented on the nuclear-magnetic-resonance signal from the hydrogen
magnetic-dipole moment in the OH" ion substituted for Cl- in a KCI lattice. The recovery _
rate of the signal after saturation is measured for OH" concentrations down to 1,2 %10 OH"/

cm3.

This rate is used to deduce a displacement distance =0,4x10~8 cm for the hydrogen

nucleus from the halogen vacancy site when the OH" ion has (100)-directed localized states in
a rigid lattice and a correlation time =4 %108 sec. The effects of librating states of the OH™
and lattice relaxation are estimated. A discussion of the dependence of the displacement dis-

tance on the correlation time is included.

I. INTRODUCTION

In recent years a great deal of experimental and
theoretical work has been done on alkali halides

with OH" ions substituted as an impurity.! The OH"
is known to go into the KCl1 lattice by substituting
for C1” ion, and the potential minima of the OH" ion
are believed to be such that alignment of the OH"



